1.win10caffe安装后怎么使用
整了一晚上加一上午。网上关于python的记录较少,这里写一下。
这里的环境是WIN10+cuda v7.5 +cudnn v4 + opencv + pycharm+VS2013
使用的是GPU,我的GPU是titan16G+内存32G
首先是caffe的文件以及第三方库的编译,这里提供一个已经编译好的的连接,我就是从那里下好然后编译完毕的。
点击打开链接 happynear的
然后就是如何编译python接口。
1、首先先生成两个python文件,在src/caffe/proto/extract_proto.bat 里生成caffe_pb2.py 这个之后有用。
2、然后打开已经给好的caffe/buildVS2013,打开里面已经有的工程文件,正常的情况下应该是有7个工程,选中pycaffee单独作为要编译的项目。如图所示:
把pycaffe作为单启动。注意需要在release x64位下编译。
如果没有这个的话,就将这个文件夹里python文件夹中的项目加入即可。如果没有python项目,就自己建一个,将python文件夹里的cpp文件加入就可以了。
3、选择pycaffe的属性,将配置属性下的VC++目录中的包含目录和库目录填上你python所在的include和libs 再在C/C++的目录下的附加包含目录一项中添加
以我的python为例。D:/python27/Lib;D:/python/include/ 以及D:/Python27/Lib/site-packages/numpy/core/include 如果你安装了CUDNN这里可以在预处理器那里把USE_CUDNN加上,同时在LINKER的输入目录下的附加依赖库中加入cudnn的lib文件。
3、开始编译即可。这里要注意一定要和caffe、caffelib在一个项目里编译,否则会报错。
4、编译成功后会在caffe/python/caffe下生成_caffe.pyd 是打不开的
5、配置python环境:需要几个额外库
Cython>=0.19.2
numpy>=1.7.1
scipy>=0.13.2
scikit-image>=0.9.3
matplotlib>=1.3.1
ipython>=3.0.0
h5py>=2.2.0
leveldb>=0.191
networkx>=1.8.1
nose>=1.3.0
pandas>=0.12.0
python-dateutil>=1.4,<2
protobuf>=2.5.0
python-gflags>=2.0
pyyaml>=3.10
Pillow>=2.3.0
six>=1.1.0
其中numpy要装MKL版本的,不然scipy装上了BLAS不能用
leveldb没有windows版本的,不过我找到了可以使用的办法。见这个博客:
点击打开链接
如果有pip install 装不上的,可以上这个网站找 wheel文件安装就可以了
点击打开链接
6、最后把目录中python下的caffe文件夹复制到python27/Lib/site-packages就可以了。
测试的时候只需要在控制台下输入import caffe 看能载入就知道成功了:)
2.有人可以帮我配置windows下的caffe吗
1.配置环境
我在自己的笔记本配置的caffe,配置的环境为:Windows 7 64位 + cuda6.5 + Opencv2.49 +VS2013。假设在配置caffe之前,你已经准备好这些。
本文中将给出一些编译好的依赖库,如果你也是用的Windows 7 64位+VS2013,可以直接使用。
2.准备依赖库
在Windows下配置caffe,一个很主要的问题就是依赖库的编译。不像在Ubuntu下那么方便,在Windows下,依赖库都需要使用vs2013进行编译才能使用。下面我将介绍caffe需要的依赖库(如果你也是win7 64位+VS2013,可以直接使用我提供的依赖库)。
2.1 boost
boost可以下载源码进行编译,也可以直接下载安装文件。我使用的是后者,方便、快捷。
我使用的是:boost_1.56_0-msvc-12.0-64.exe
注意下载适合你的配置环境的boost版本即可。
下载完毕,双击运行安装文件即可。
2.2 Glog+Gflag+Protobuf+LevelDB+HDF5+LMDB+Openblas
这一部分的很多都是谷歌的开源库,不容易下载(你懂的)。所以我使用的是Neil Z. SHAO's Blog
提供的编译好的。
下载完,解压得到3rdparty文件夹。在下一段将会用到。
3.建立caffe工程
3.caffe windows10 vs2013怎么配置
1.配置环境我在自己的笔记本配置的caffe,配置的环境为:Windows 7 64位 + cuda6.5 + Opencv2.49 +VS2013。
假设在配置caffe之前,你已经准备好这些。本文中将给出一些编译好的依赖库,如果你也是用的Windows 7 64位+VS2013,可以直接使用。
2.准备依赖库在Windows下配置caffe,一个很主要的问题就是依赖库的编译。不像在Ubuntu下那么方便,在Windows下,依赖库都需要使用vs2013进行编译才能使用。
下面我将介绍caffe需要的依赖库(如果你也是win7 64位+VS2013,可以直接使用我提供的依赖库)。2.1 boostboost可以下载源码进行编译,也可以直接下载安装文件。
我使用的是后者,方便、快捷。我使用的是:boost_1.56_0-msvc-12.0-64.exe注意下载适合你的配置环境的boost版本即可。
下载完毕,双击运行安装文件即可。2.2 Glog+Gflag+Protobuf+LevelDB+HDF5+LMDB+Openblas这一部分的很多都是谷歌的开源库,不容易下载(你懂的)。
所以我使用的是Neil Z. SHAO's Blog提供的编译好的。下载完,解压得到3rdparty文件夹。
在下一段将会用到。3.建立caffe工程准备好了caffe需要的依赖库和环境之后,下面就可以建立caffe的vs项目,进行编译了。
3.1 下载caffe源码可以从caffe的github主页下载源码。下载地址:Caffe's GitHub解压文件,假设caffe源码所在目录为CAFFE_ROOT。
3.2 准备项目需要的依赖库和系统环境变量经过上一阶段的准备,caffe项目所需的依赖库都已经准备好。1.首先设置系统环境变量(以我的为例):CUDA_PATH_V6_5 安装好cuda6.5之后,会自动添加环境变量CUDA_PATH_V6_5OPENCV_2_49 D:/Tools/opencv2.49/build/BOOST_1_56 D:/Tools/boost_1_56_02.将3rdparty文件夹放到CAFFE_ROOT3.3 用vs建立caffe项目1.用VS2013在CAFFE_ROOT下建立 win32 console application,选择空项目。
将项目的平台由32位改为64位2.修改项目属性项目——属性——C/C++——常规——附加包含目录添加:../include;../src;../3rdparty/include;../3rdparty;../3rdparty/include;../3rdparty/include/openblas;../3rdparty/include/hdf5;../3rdparty/include/lmdb;../3rdparty/include/leveldb;../3rdparty/include/gflag;../3rdparty/include/glog;../3rdparty/include/google/protobuf;项目——属相——VC++目录——包含目录添加:$(CUDA_PATH_V6_5)\include;$(OPENCV_2_49)\include;$(OPENCV_2_49)\include\opencv;$(OPENCV_2_49)\include\opencv2;$(BOOST_1_56)项目——属性——链接器——常规——附加库目录添加:$(CUDA_PATH_V6_5)\lib\$(PlatformName);$(OPENCV_2_49)\x64\vc12\lib;$(BOOST_1_56)\lib64-msvc-12.0;..\3rdparty\lib;项目——属性——链接器——输入——附加依赖项debug添加:opencv_ml249d.libopencv_calib3d249d.libopencv_contrib249d.libopencv_core249d.libopencv_features2d249d.libopencv_flann249d.libopencv_gpu249d.libopencv_highgui249d.libopencv_imgproc249d.libopencv_legacy249d.libopencv_objdetect249d.libopencv_ts249d.libopencv_video249d.libopencv_nonfree249d.libopencv_ocl249d.libopencv_photo249d.libopencv_stitching249d.libopencv_superres249d.libopencv_videostab249d.libcudart.libcuda.libnppi.libcufft.libcublas.libcurand.libgflagsd.liblibglog.liblibopenblas.dll.alibprotobufd.liblibprotoc.libleveldbd.liblmdbd.liblibhdf5_D.liblibhdf5_hl_D.libShlwapi.libgflags.liblibprotobuf.libleveldb.liblmdb.liblibhdf5.liblibhdf5_hl.librelease添加:opencv_ml249.libopencv_calib3d249.libopencv_contrib249.libopencv_core249.libopencv_features2d249.libopencv_flann249.libopencv_gpu249.libopencv_highgui249.libopencv_imgproc249.libopencv_legacy249.libopencv_objdetect249.libopencv_ts249.libopencv_video249.libopencv_nonfree249.libopencv_ocl249.libopencv_photo249.libopencv_stitching249.libopencv_superres249.libopencv_videostab249.libcudart.libcuda.libnppi.libcufft.libcublas.libcurand.libgflags.liblibglog.liblibopenblas.dll.alibprotobuf.liblibprotoc.libleveldb.liblmdb.liblibhdf5.liblibhdf5_hl.libShlwapi.lib3.4 编译caffe配置好caffe项目的属性之后,下面就可以一步一步的编译caffe了。3.4.1 编译./src中的文件首先,将../src文件夹中的*.cpp文件添加到工程中。
依次编译每一个*.cpp文件。1.编译blob.cpp直接编译时会报错,缺少文件”caffe\proto\caffe.pb.h”这个时候需要将proto.exe放到../3rdparty/bin文件夹将GernaratePB.bat放在../scripts文件夹运行bat脚本文件即可生成caffe.pb.h然后就可以成功编译。
2.编译common.cpp直接编译这个文件,会出现关于getid和fopen_s的错误。可通过如下步骤修改:在代码前面添加:#include 修改项目属性:项目——属性——C/C++——预处理器——预处理器定义添加:_CRT_SECURE_NO_WARNINGS在代码中getid的位置进行如下修改:#ifdef _MSC_VERpid = getid();#elsepid = _getid();#endf修改完毕之后,可以成功编译。
3.编译net.cpp直接编译这个文件。
4.如何在Windows环境下配置Caffe
整了一晚上加一上午。网上关于python的记录较少,这里写一下。
这里的环境是WIN10+cuda v7.5 +cudnn v4 + opencv + pycharm+VS2013
使用的是GPU,我的GPU是titan16G+内存32G
首先是caffe的文件以及第三方库的编译,这里提供一个已经编译好的的连接,我就是从那里下好然后编译完毕的。
点击打开链接 happynear的
然后就是如何编译python接口。
1、首先先生成两个python文件,在src/caffe/proto/extract_proto.bat 里生成caffe_pb2.py 这个之后有用。
2、然后打开已经给好的caffe/buildVS2013,打开里面已经有的工程文件,正常的情况下应该是有7个工程,选中pycaffee单独作为要编译的项目。如图所示:
把pycaffe作为单启动。注意需要在release x64位下编译。
如果没有这个的话,就将这个文件夹里python文件夹中的项目加入即可。如果没有python项目,就自己建一个,将python文件夹里的cpp文件加入就可以了。
3、选择pycaffe的属性,将配置属性下的VC++目录中的包含目录和库目录填上你python所在的include和libs 再在C/C++的目录下的附加包含目录一项中添加
以我的python为例。D:/python27/Lib;D:/python/include/ 以及D:/Python27/Lib/site-packages/numpy/core/include 如果你安装了CUDNN这里可以在预处理器那里把USE_CUDNN加上,同时在LINKER的输入目录下的附加依赖库中加入cudnn的lib文件。
3、开始编译即可。这里要注意一定要和caffe、caffelib在一个项目里编译,否则会报错。
4、编译成功后会在caffe/python/caffe下生成_caffe.pyd 是打不开的
5、配置python环境:需要几个额外库
Cython>=0.19.2
numpy>=1.7.1
scipy>=0.13.2
scikit-image>=0.9.3
matplotlib>=1.3.1
ipython>=3.0.0
h5py>=2.2.0
leveldb>=0.191
networkx>=1.8.1
nose>=1.3.0
pandas>=0.12.0
python-dateutil>=1.4,<2
protobuf>=2.5.0
python-gflags>=2.0
pyyaml>=3.10
Pillow>=2.3.0
six>=1.1.0
其中numpy要装MKL版本的,不然scipy装上了BLAS不能用
leveldb没有windows版本的,不过我找到了可以使用的办法。见这个博客:
点击打开链接
如果有pip install 装不上的,可以上这个网站找 wheel文件安装就可以了
点击打开链接
6、最后把目录中python下的caffe文件夹复制到python27/Lib/site-packages就可以了。
测试的时候只需要在控制台下输入import caffe 看能载入就知道成功了:)
5.如何卸载win10自带的caffe
卸载Win10系统自带程序的方法: 提示:卸载Win10系统自带程序需要使用Win10的内置工具PowerShell。 步骤: 1、点击任务栏中的搜索,输入PowerShell,然后在搜索结果中右键单击PowerShell,选择以管理员身份运行。 2、在PowerShell中输入下面的命令回车稍等片刻就可以将当前账户中的所有预装应用都删除。注意,过程中可能会出现错误提示,不过这并不影响最终效果。 Get-AppXPackage | Remove-AppxPackage 3.1、不仅当前账户,我们还可以卸载其他账户中的所有应用,只需输入下面的命令,将其中的《username》替换为账户名称即可。 Get-AppXPackage -User 《username》 | Remove-AppxPackage 3.2、如果要卸载所有账户中的应用,可输入下面的命令。 Get-AppxPackage -AllUsers | Remove-AppxPackage 3.3、遇到有多个账户情况,但是又不想让每个账户中都包含全套相同的应用,在创建账户之前,可以从系统账户中删除这些应用,这样新创建的账户中就不会包含全套应用了。从系统账户中卸载应用,只需输入下面的命令。 Get- -online | Remove-–online 备注: 需要注意的是,执行以后上操作后会将应用商店也。 可输入下面的命令,可以从系统账户中删除这些应用:卸载Win10系统自带程序需要使用Win10的内置工具PowerShell.2、如果要卸载所有账户中的应用。
2,不过这并不影响最终效果,过程中可能会出现错误提示、在PowerShell中输入下面的命令回车稍等片刻就可以将当前账户中的所有预装应用都删除、联系支持人员,只需输入下面的命令。
Get-AppXPackage -User 《username》 | Remove-AppxPackage
3,但是又不想让每个账户中都包含全套相同的应用卸载Win10系统自带程序的方法,这样新创建的账户中就不会包含全套应用了,将其中的《username》替换为账户名称即可,我们还可以卸载其他账户中的所有应用:
需要注意的是、点击任务栏中的搜索、遇到有多个账户情况。
Get-AppXPackage | Remove-AppxPackage
3。另外:
1,输入PowerShell、Edge浏览器,然后在搜索结果中右键单击PowerShell,选择以管理员身份运行,目前也没有找回的方法,只需输入下面的命令,执行以后上操作后会将应用商店也一并删除,比如Cortana、不仅当前账户,设置和搜索无法从系统中删除,在创建账户之前。注意.1.3。
Get-AppxPackage -AllUsers | Remove-AppxPackage
3,系统推送的某些更新会重新在系统中安装应用商店:
提示。
Get- -online | Remove-–online
备注,部分内置应用。
步骤、Windows反馈。从系统账户中卸载应用
6.有没有安装过windows C++版本caffe的
这个是可以安装上去的。
步骤如下
1 cifar10数据库
60000张32*32 彩色图片 共10类
50000张训练
10000张测试
下载cifar10数据库
这是binary格式的,所以我们要把它转换成leveldb格式。
2 在../caffe-windows/examples/cifar10文件夹中有一个 convert_cifar_data.cpp
将他include到MainCaller.cpp中。如下:
编译。.,在bin文件夹里出现convert_cifar_data.exe。然后 就可以进行格式转换。binary→leveldb
可以在bin文件夹下新建一个input文件夹。将cifar10.binary文件放在input文件夹中,这样转换时就不用写路径了。
cmd进入bin文件夹
执行后,在output文件夹下有cifar_train_leveldb和cifar_test_leveldb两个文件夹。里面是转化好的leveldb格式数据。
当然,也可以写一个bat文件处理,方便以后再次使用。
3 下面要求数据图像的均值
编译../../tools/comput_image_mean.cpp
编译成功后。接下来求mean
cmd进入bin。
执行后,在bin文件夹下出现一个mean.binaryproto文件,这就是所需的均值文件。
4 训练cifar网络
在。/examples/cifar10文件夹里已经有网络的配置文件,我们只需要将cifar_train_leveldb和cifar_test_leveldb两个文件夹还有mean.binaryproto文件拷到cifar0文件夹下。
修改cifar10_quick_train.prototxt中的source: "cifar-train-leveldb"
mean_file: "mean.binaryproto" 和cifar10_quick_test.prototxt中的source:
"cifar-test-leveldb"
mean_file: "mean.binaryproto"就可以了,
后面再训练就类似于MNIST的训练。写一个train_quick.bat,内容如下:
[plain] view plaincopy
copy ..\\..\\bin\\MainCaller.exe ..\\..\\bin\\train_net.exe
SET GLOG_logtostderr=1
"../../bin/train_net.exe" cifar10_quick_solver.prototxt
pause
先编译一遍 train_net.cpp
运行train_quick.bat
转载请注明出处windows之家 » caffe安装win10